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Abstract A finite element algorithm is presented for the simulation of steady incompressible
fluid flow with heat transfer using triangular meshes. The continuity equation is modified by
employing the artificial compressibility concept to provide coupling between the pressure and
velocity fields of the fluid. A standard Galerkin finite element method is used for spatial
discretization and an explicit multistage Runge-Kutta scheme is used to march in the time
domain. The resulting procedure is stabilized using an artificial dissipation technique. To
demonstrate the performance of the proposed algorithm a wide range of test cases is solved
including applications with and without heat transfer. Both natural and forced convection
applications are studied.

Introduction
Numerical simulation of convection heat transfer in incompressible fluid flows is of
great practical importance due to their numerous applications in many industrial
devices such as heat exchangers, cooling of electronic systems, etc. The diversity of
flow regimes and heat transfer rates in different applications emphasizes the need
for a generalized simulation method which can handle most flow conditions
without ad hoc modifications. The flow characteristics in convection heat transfer
are normally identified using three parameters; Reynolds number, Prandtl number
and Grashof number. The Reynolds number controls the flow domain and
specifies the limit of laminar flow regime and the size of recirculation zones, etc.
The Prandtl number, on the other hand, controls the temperature field and its
relationship with the flow characteristics. When natural convection is present, the
buoyancy force also becomes the driving force for both fluid flow and heat transfer
phenomena, and the Grashof number is important.

In the context of incompressible fluid flow, two different approaches are
normally adopted to satisfy the incompressibility constraint and couple the
pressure and velocity fields:

(1) pressure based methods;

(2) artificial compressibility (AC) methods.

Tamamidis et al. (1996) provide a comparative study of the two methods. The
AC method, which is adopted in this paper, is especially suitable for use in
conjunction with a compressible flow solver. The concept of artificial
compressibility was first introduced by Chorin (1967) and extensively used by
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other researchers since. In this method, a pseudo-temporal pressure term is
added to the continuity equation to impose the incompressibility constraint. As
a result, the high speed sound waves are eliminated and the modified system
becomes much better conditioned for numerical solution. The original version
of the AC method is only accurate for the steady state problems; however;
Wasfy et al. (1998) have recently shown that the method can be extended to
solve the unsteady flow problems. Various types of the upwind and artificial
dissipation schemes have been used in conjunction with AC to provide stable
numerical methods. Lin and Sotiropoulos (1997) have compared three different
numerical dissipation techniques and reported their merits and deficiencies. In
this work, an artificial dissipation method (AD) due to Jameson et al. (1981) is
adopted. This method is especially popular among CFD practitioners because
of its simplicity and computational efficiency.

Both the AC and AD methods have already been used in many fields of fluid
dynamics. However, in the context of finite element method, their use had been
limited to the isothermal problems. Manzari et al. (1998) have recently developed an
AD-based algorithm for 3D compressible turbulent flow problems and shown that
it performs well for a wide range of flow regimes. They have also shown that by
employing parallel computing techniques the efficiency of the method can be
greatly enhanced (Manzari et al., 1998). These promising achievements encouraged
the author to extend the scheme to the incompressible flow problems with heat
transfer. At this stage only laminar flow problems are considered. In this paper,
first the modified system of governing equations for incompressible viscous flow
with heat transfer is presented and the associated initial and boundary conditions
are described. Then, the numerical solution procedure including the spatial and
temporal discretizations is elaborated. Finally, a number of problems with and
without heat transfer are solved, and the accuracy and suitability of the proposed
method are examined.

Governing equations
A complete set of equations to describe laminar flow of an incompressible fluid
with heat transfer consists of equations for conservation of mass, momentum
and energy. Assuming a Newtonian fluid with negligible viscous dissipation,
the governing system of equations in a Cartesian coordinate system Ox1x2 can
be written in the non-dimensional conservation form as
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In these equations, t denotes time, ui is the velocity in direction xi, p is pressure,
T is temperature, �2 is a constant and �ij is the Kronecker delta. In addition
Reynolds number, Peclet number and Grashof number are defined as

Re � �
�
0U�L�

��0
Pe � RePr Gr � L�3��0

2g��T�T�
��0

2
�3�

where L� and U� are the characteristic length and velocity used for non-
dimensionalization, ��0 is the molecular dynamic viscosity at a reference
temperature T�0 and Pr is the Prandtl number. Also, the stress tensor � ij is
defined as

�ij � �
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The non-dimensional quantities are related to their dimensional counterparts
(indicated here by superscript �) via the following relations
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where ��0 is the fluid density at T�0 and T�w is the wall temperature. In external
flow problems, freestream values are chosen for U� and T�0 , whilst in duct flow
problems the flow entrance condition is used for this purpose. As was
mentioned earlier and will be noticed from equation (2), the continuity equation
has been written in a modified form with an extra transient term. This form
enables us to solve incompressible flow problems using the compressible flow
solvers. The artificial transient term @p

@t
helps to eliminate the high speed sound

waves associated with the system. The parameter �2 is a constant which is
selected to accelerate convergence to the steady state solution. �2 can be related
to the local Mach number in compressible flows and following Rizzi and
Eriksson (1984), we use �2 � max�0:3; ruiui� with 1 < r < 5. It must be
emphasized here that although the system of equations (1) has no physical
meaning as it stands, it represents exactly our physical problem when the
steady state condition is reached.

In equation (2) it is assumed that the gravity force is in the y direction and
therefore the buoyancy force in natural convection acts in the y direction only.
If in a problem natural convection is negligible, Gr is set to zero. For isothermal
flow problems, the energy equation is omitted from the system of equations
and only the first three equations in equation (1) are solved.

Initial and boundary conditions
Let us consider a domain, 
, which is bounded by a closed surface, ÿ, with
unit outward normal vector n � �n1; n2�. A complete definition of the
above problem requires the definition of an appropriate set of initial and
boundary conditions. Two types of problems are considered; isothermal
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and non-isothermal. For non-isothermal problems only, a set of initial
and boundary conditions are required for temperature. In such problems,
the initial temperature is set to zero and two types of boundary conditions
are considered; isothermal wall and adiabatic wall. In the case of an
isothermal wall, temperatures everywhere on the wall are set to a
prescribed value. For an adiabatic wall no heat transfer is allowed through the
boundary.

Both isothermal and non-isothermal problems, however, require initial and
boundary conditions for the pressure and velocity fields. Again two types of
flow domains are possible; external and internal flows. For external flows, the
freestream values are imposed everywhere in 
 as initial conditions whilst for
internal flows the entrance conditions are used for this purpose.

At the entrance section of an internal (channel) flow or at the inflow
boundary of an external flow, only flow velocities are imposed and the pressure
field is computed. At the exit section of an internal flow or at the outflow
boundary of an external flow, the pressure field is set to zero and the velocity
field is computed.

At a wall boundary, the no slip condition ui � 0 is imposed. For a symmetric
boundary, an adiabatic boundary is assumed for the temperature field and the
slip condition is imposed for the velocity field by cancelling the normal
component of the velocity vector.

Solution alorithm
Spatial discretization
The first stage for solving the problem in hand by the finite element method is
to transform it into a weak variational form. This weak form can be written as:
find U such thatZ
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for all suitable weighting functions, W , and for all t > t0. In this expression, an
overbar represents a prescribed normal boundary flux.

Next the solution domain 
 is discretized using triangular elements, with
nodes numbered 1; � � � ;P located at the element vertices. A piecewise linear
approximate solution is assumed in the form

U � U�P� � UJ �t�NJ �x� J � 1; � � � ;P �7�
where NJ represents the linear finite element shape function associated with
node J and UJ is the value of the approximation at node J . A Galerkin
approximate solution is produced using the variational formulation of the
problem in the form: find U�P� such that
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for I � 1; 2; :::;P and for all t > t0. The integrals appearing in this Galerkin
statement are evaluated, using an edge-based data structure (Peraire et al.,
1993), in the form
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where the edge s in the mesh joins nodes I and Is, and J1 and J2 are the boundary
nodes which are connected to the boundary node I . Note that the terms h�iI are
only non±zero when node I is a boundary node. The weights Cj

IIs
and Df are

computed as
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where 
E is the surface area of the element E and nj is the component in the xj

direction of the unit normal to the boundary edge f , of length ÿf , which joins
the nodes I and Jf . An advantage of this edge data structure is that it leads to
savings in both CPU and memory requirements especially when 3D
simulations are attempted (Peraire et al., 1993). For the steady flow analysis
which is of interest here, the consistent finite element mass matrix M which
appears in equation (9) is replaced by the diagonal lumped mass matrix ML.
The nodal values of the gradients of U, which are required before the viscous
fluxes Gj

I can be evaluated for use in equation (9), are also obtained in a
variational form (Lyra et al., 1995) as
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The semi-discrete finite element formulation (9) represents a central difference
type of approximation to the spatial derivatives and is prone to produce
spurious oscillations which can cause numerical instabilities. Therefore, a form
of stabilization will be required before it can be used for the simulation of flow
problems. This is discussed next.
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Stabilization technique
In this work, an artificial dissipation scheme due to Jameson et al. (1981) is used
to stabilize the solution procedure. This scheme is a simple yet computationally
efficient method in which a background diffusion term is added to the right-
hand side of equation (9). The diffusion DI added at a general node I is
constructed as a fourth order operator in the form of

DI � ÿ
XmI

s�1

�
�4�
IIs
�r2UIs

ÿr2UI �min��I ; �Is
�

mI �mIs

�12�

where the second order operator is approximated according to

r2UI � 1

mI

XmI

s�1

�UIs
ÿUI � �13�

Here mI denotes the number of edges connected to the node I and � is the
maximum eigenvalue of the Jacobian matrix lj@Fj=@U in absolute value, where
l � �l1; l2� is the unit vector in the direction of the edge IIs. The tuning
parameter �

�4�
IIs

is a constant whose value must be optimized for each problem.

Time discretization
A three-stage scheme is employed to advance the solution from time level
t � tn to time level t � tn�1 � tn ��t. Within each time step, this scheme is
implemented in the form

U
�0�
I � Un

I

U
�k�
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I ÿ �k �t �ML�ÿ1 RI
�kÿ1� ÿDI

�0�
� �

for k � 1; 2; 3

Un�1
I � U

�3�
I

�14�

Here RI
�kÿ1� represents the right-hand side of equation (9) computed at the

stage kÿ 1, while the added diffusion DI is held constant at the value
computed at tn. The values �1 � 0:6, �2 � 0:6 and �3 � 1 are adopted for the
coefficients in equation (14).

In this work, a local time stepping approach is used to accelerate the
convergence rate towards the steady-state. The time step used in equation (14)
is computed from

�tI � �CFL��M�I
XmI

s�1

LIIs
j �max� �IIs

j � 2L2
IIs
�I

Re�M�I

" #( )ÿ1

�15�

where CFL is the Courant-Friedrichs-Lewy number and the maximum
eigenvalue of the Jacobian matrix for edge IIs, is defined as

��max�IIs
� jvIIs

� SIIs
j � �2 �16�
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where vIIs
denotes the average velocity of the edge IIs. Here the following

notations are used

CIIs
� �C1

IIs
;C2

IIs
� LIIs

� jCIIs
j Sj

IIs
� Cj

IIs

jCIIs
j SIIs

� CIIs

jCIIs
j �17�

Figure 1.
Flow over a backward
facing step (Re = 229):
schematic of the
problem (top) and mesh
used (bottom)

Figure 2.
Flow over a backward
facing step (Re = 389):
schematic of the
problem (top) and mesh
used (bottom)
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The maximum value of CFL is a function of the flow characteristics and must
be optimized for each problem. A value around 0:5 gives satisfactory results for
most of the cases solved in this paper but for severe flow conditions such as
flows with very high Ra numbers, this will need to be decreased an order of
magnitude.

Test cases
In this section a number of test cases are solved to examine the performance
and accuracy of the proposed scheme. The test cases are chosen from a wide

Figure 3.
Flow over a backward
facing step (Re = 229):

from top to bottom ±
pressure contour plots,

velocity profiles at
different sections

(symbol: experiment,
line: computed), velocity
vectors,velocity vectors
(zoom), and u1 velocity

contour plot and its
zoom at step
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range of applications to demonstrate the adequacy of the method for solving
flow problems without and with heat transfer. The results are compared with
experimental or numerical data where available.

Flow over a backward facing step
The first test case is an isothermal flow over a backward facing step. This flow has
been extensively used for assessing capabilities of the flow solvers. Both
experimental and numerical results are available for various Reynolds numbers. In
this paper, two expansion ratios are studied, i.e. 1:2 and 2:3. The experimental data
for expansion ratio 1:2 have been given by Armaly et al. (1983) and for ratio 2:3 by
Denham and Patrick (1974). The Reynolds numbers chosen are 229 and 389 for
ratios 2:3 and 1:2, respectively. Figures 1 and 2 show schematics of the flow
domains and the meshes used. For both cases a mesh with 4,183 nodes and 8,092
triangular elements is used. The flow downstream of the step is extended for 36

Figure 4.
Flow over a backward
facing step (Re = 389):
from top to bottom;
pressure contour plots,
velocity profiles a
different sections
(symbol: experiment,
line: computed), velocity
vectors, velocity
contours (zoom),and u1

velocity contour plot
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times the height of step to make sure that the outflow is fully developed. Figures 3
and 4 show the result of computations for Re � 229 and 389, respectively. It is seen
that for both cases the velocity profiles are in good agreement with the
experimental data and quite smooth pressure fields are produced. It must be
mentioned that for ratio 1:2, Re � 389 is the limit of having a two-dimensional
laminar flow. Hence, it can be deduced that the algorithm presented here is capable
of solving such problems with a good degree of accuracy. Finally, in Figure 5, the
convergence history of L2-norm of residuals for three primitive variables (p, u1, u2)
are shown. These curves show a good convergence behaviour for the proposed
method. The computational time for this problem is 50 seconds per 1,000 iterations
on a Sun Ultra 1 workstation.

Lid-driven cavity flow
In this test case, a recirculation flow in a square cavity generated by
the uniform translation of the upper surface of the cavity (lid) is studied. The speed

Figure 6.
Lid-driven cavity flow:

schematic of the
problem (left) and mesh

used (right)

Figure 5.
Flow over a backward

facing step: convergence
history of L2-norm of

residuals for primitive
variables (p; u; v)
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Figure 7.
Lid-driven cavity flow:
velocity profile along x
= 0.5 (left) and along y =
0.5 (right) ± line:
computed, diamond:
experiment
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of translation is unity and no fluid can escape from the gap between the cavity and
its lid. A schematic of the problem and the mesh used are shown in Figure 6. The
mesh consists of 51� 51 points and 5,000 triangular elements. In order to define
the pressure domain, pressure at point A is set to zero. The problem is solved for
Re � 100, 1,000, 5,000 and 10,000. In Figure 7, profiles of the horizontal velocity
along the vertical centre line of the cavity and the vertical velocity along the
horizontal centre line of the cavity are illustrated for various Reynolds numbers.
For comparison, the benchmark solutions obtained by Ghia et al. (1982) are also
shown in these graphs. It is observed that the computed results are in good
agreement with the benchmark solution. As expected from the type of flow solver
adopted here, the agreement is even better for higher Reynolds number flows. The
largest discrepancy is associated with the vertical velocities which are
comparatively small. This is due to the minimum required level of numerical
dissipation to maintain the stability of the solution for the mesh spacing used. A
finer grid will obviously reduce the discrepancy.

Natural convection in a cavity
In this test case, a pure natural convection in a square cavity is studied. The left
and right vertical walls of the cavity are kept at T � 1 and T � 0, respectively,
while the horizontal walls are insulated. Figure 8 shows a schematic of the
problem. The computational mesh used is the same as in the previous test case.
The Prandtl number is set to unity and the problem is solved for five different
Rayleigh numbers; 103, 104, 105, 106 and 107. Figure 9 illustrates a set of plots
for each Rayleigh number. These are velocity vectors, u1 and u2 contour plots
and temperature contours. A comparison with the results presented by de Vahl
Davis (1983) shows very good agreements for all cases. Figure 10 shows
variations of Nusselt number (Nu � ÿ@T=@x) along the hot and cold walls for
various Rayleigh numbers. In Table I, a number of important quantities for this
type of flow are presented for various Rayleigh numbers studied here and
compared with those given by de Vahl Davis (1983) and Ramaswamy et al.
(1992). These quantities are the maximum horizontal velocity and its associated
y, the maximum vertical velocity and its associated x, the minimum and

Figure 8.
Natural convection in

cavity: schematic of the
problem (left) and mesh

used (right)
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maximum Nusselt numbers, Nusselt number at y � 0:5 and the average
Nusselt number. Comparing the computed values with the results obtained by
de Vahl Davis (1983) and Ramaswamy et al. (1992) shows a close agreement.
Finally, the convergence history for the pressure and temperature (for

Figure 9.
Natural convection in
cavity: velocity vectors,
u1 and u2 velocities and
temperature contour
plots (left to right)



An explicit finite
element

algorithm

873

Ra � 105) is shown in Figure 11. The convergence history for the velocity
components coincide with that of the pressure. Again, as seen for the
isothermal flows, these curves demonstrate a good convergence behaviour for
the thermal problems as well. The computational time for this problem is 60
seconds per 1,000 iterations on a Sun Ultra 1 workstation.

Figure 10.
Natural convection

cavity: Nusselt number
along the hot (left) and

cold (right) walls

Table I.
Comparison with the

benchmark solution

Ra 103 104 105 106 107

u1max�y� 3.68 (0.817) 16.1 (0.817) 34.0 (0.857) 6.54 (0.875) 139.7 (0.919)
de Vahl Davis (1983) 3.65 (0.813) 16.2 (0.823) 34.73 (0.855) 64.3 (0.850)
u2max�y� 3.73 (0.1827) 19.9 (0.1246) 70.0 (0.068) 228 (0.039) 698 (0.235)
de Vahl Davis (1983) 3.70 (0.178) 19.62 (0.119) 68.6 (0.066) 219.36 (0.038)
Ramasawamy et al. (1992) 19.62 68.6 233 717
Numin�y� 0.623 (1) 0.4968 (1) 0.614 (1) 0.716 (1) 0.787 (1)
de Vahl Davis (1983) 0.692 (1) 0.586 (1) 0.729 (1) 0.989 (1)
Numax�y� 1.47 (0.109) 3.47 (0.125) 7.71 (0.08) 17.46 (0.039) 30.46 (0.0236)
de Vahl Davis (1983) 1.50 (0.092) 3.53 (0.143) 7.71 (0.08) 17.92 (0.038)
Ramasawamy et al. (1992) 3.5 7.71 17.0 30.0
Nu1=2 1.1 2.33 4.49 8.24 11.76
de Vahl Davis (1983) 1.12 2.243 4.52 8.8
Nuave 1.074 2.084 4.30 8.743 13.99
de Vahl Davis (1983) 1.12 2.243 4.52 8.8

Figure 11.
Natural convection in

cavity: convergence
history for pressure and

temperature
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Forced convection on tube bundle
The final test case is a forced convection over a tube bundle (Massarotti et al.,
1998). This type of flow is of practical importance in the heat exchanger
industry. The tube bundle geometry is shown in Figure 12 where a staggered
arrangement of both the relative longitudinal (a=d) and the transverse (b=d)
pitches equal to 1:3 are used. Using the advantage of symmetric flow, the

Figure 12.
Forced convection on
tube bundle: schematic
of the problem (top) and
part of the mesh used
(bottom)

Figure 13.
Forced convection on
tube bundle: pressure
contour plots
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problem is only solved for the region between the two dashed lines shown in
Figure 12. The problem is solved for two Reynolds numbers, i.e. Re � 50 and
150 and the Prandtl number is 1:0. The mesh used for this problem is partially
shown in Figure 12 and consists of 3,948 triangular elements and 2,162 nodes.
The flow domain downstream of the tube bundle is extended for as much as 15

Figure 14.
Forced convection on

tube bundle:
temperature contour

plots

Figure 15.
Forced convection on
tube bundle: pressure

distribution on the tubes
(left: Re = 50, right Re =

150)

Figure 16.
Forced convection on
tube bundle: Nusselt

number distribution on
the tubes (left; Re = 50,

right; Re = 150)
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times the tube diameter for Re � 50 and 40 times for Re � 150. Figures 13 and
14 show the pressure and temperature contour plots for both Reynolds
numbers. It is seen that very smooth results are obtained for both low and high
Reynolds flows. In Figures 15 and 16, the pressure and Nusselt number
distributions on the tubes are also illustrated.

Conclusions
It is shown that the incompressible flow with heat transfer can be accurately
simulated using the proposed algorithm. It is also demonstrated that the
method works well for both natural and forced convection problems. As an
explicit time-stepping method is used, for certain flow conditions, a stable
computation would require small time steps. However, even for such cases the
total cpu time remains in a reasonable and affordable range and convergence to
the steady state is fast. The practical convenience of the method will be more
apparent when it is applied to the 3D problems. This is the subject of the
author's current research.
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